# The Crystal Structure of Benzene Iododichloride 

By Elizabeth M. Archer* and T. G. D. van Schalkwyk<br>Physics Department, University of Cape Town, South Africa

(Received 1 September 1952)
The crystal of benzene iododichloride, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ICl}_{2}$, is monoclinic. The unit cell, containing 8 molecules, has the dimensions $a=15 \cdot 6, b=5 \cdot 45, c=19 \cdot 6 \AA, \beta=90^{\circ} 30^{\prime}$ and the space group is $B 2_{1} / a$. An alternative space group is $P 2_{1} / a$, with unit cell dimensions $a=15 \cdot 6, b=5 \cdot 45, c=$ $12 \cdot 3 \AA, \beta=128^{\circ} 30^{\prime}$. The method of double Fourier synthesis was applied, using first Cu $K \alpha$ and later Mo $K \alpha$ radiation, and the projections of the electron density on the $a c$ and $b c$ planes were made. The $\mathrm{ICl}_{2}$ group is linear and symmetrical, and its direction is approximately at right angles to the plane of the benzene ring. The line joining the $I, C_{1}$ and $C_{4}$ atoms is approximately parallel to the $a c$ plane. The $\mathrm{I}-\mathrm{Cl}$ distance is $2 \cdot 45 \AA$, the $\mathrm{C}-\mathrm{I}$ distance is $2 \cdot 00 \AA$. The angle $\mathrm{Cl}_{2}-\mathrm{I}-\mathrm{C}_{1}$ is $86^{\circ}$. The closest approach between I and Cl in adjacent molecules is $3.40 \AA$, between I and I $4 \cdot 70 \AA$, between Cl and $\mathrm{Cl} 4.44 \AA$, between I and $\mathrm{CH} 4.08 \AA$, between Cl and $\mathrm{CH} 3.77 \AA$ and between CH and CH $3.55 \AA$. The main binding forces in the crystal are evidently between neighbouring iododichloride groups.

## Physical and X-ray data

Crystals of benzene iododichloride were grown by slowly cooling a solution in carbon tetrachloride. They take the form of yellow needles and belong to the monoclinic system. The elongation of the needles is along the symmetry axis, here taken as the $b$ axis. The most commonly developed faces are $\{001\}$ (cleavage plane), $\{100\},\{101\},\{011\}$ and $\{01 \overline{1}\}$.

The crystals decompose fairly rapidly when exposed to air and ultra-violet light, and it was necessary to grow fresh ones for each set of photographs taken.

Work on the crystal was started some years ago by one of us (E.M.A.) using filtered $\mathrm{Cu} K \alpha$ radiation, and the following data were obtained from oscillation and Weissenberg photographs:

$$
a=15 \cdot 6, b=5 \cdot 45, c=19 \cdot 6 \AA, \beta=90^{\circ} 30^{\prime}
$$

The unit cell contains 8 molecules of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ICl}_{2}$ and the calculated density is $2.19 \mathrm{~g} . \mathrm{cm} .^{-3}$, in agreement with an observed density of $2 \cdot 2 \mathrm{~g} . \mathrm{cm} .^{-3}$.

Spectra of general type $h k l$ occur only with $h+l=$ $2 n$. Spectra of type $h 0 l$ have $h=2 n$ and $l=2 n$, and spectra of type $0 k 0$ have $k=2 n$. The cell is therefore centred on the $B$ face, and the space group is $B 2_{1} / a$ (or $B 2_{1} / c$ ).

An alternative unit cell is primitive with $a=15 \cdot 6$, $b=5 \cdot 45, c=12 \cdot 3 \AA, \beta=128^{\circ} 30^{\prime}$ and the corresponding space group is $P 2_{1} / a$, but the nearly orthogonal $b$ centred cell has certain advantages in practice and has therefore been used.

The optimum thickness for these crystals with $\mathrm{Cu} K \alpha$ radiation, the only radiation at first available, is about 0.005 cm . and it was necessary to use crystals about 0.025 cm . in thickness. With these, Weissen-

[^0]berg photographs were obtained with exposures of the order of $20 . \mathrm{hr}$., and the intensities were compared visually with a set of spots produced by graded exposures. The intensities were corrected for polarization and the usual geometrical factors, but not for absorption, for scaling factor or for temperature effect. From these preliminary measurements it was possible to determine the nature of the structure with some degree of accuracy.

At this point the first author (E.M.A.) left Cape Town and the work was completed by the second author, who took a new set of Weissenberg photographs with Mo $K \alpha$ radiation, for which the optimum crystal thickness is about 0.043 cm . The crystals used had thicknesses of about 0.04 cm . and exposures up to 40 hr . were made. Intensities were measured on the micro-photometer of the Royal Observatory of the Cape of Good Hope, using the method described by Klug (1950). In addition to the geometrical and polarisation corrections, a temperature correction, $\exp \left\{-B\left(\sin ^{2} \theta\right) / \lambda^{2}\right\}$, was applied with $B=3.0 \AA^{2}$. No allowance for absorption was made. The $84 h 0 l$ spectra were scaled by Wilson's method of comparing the average observed and calculated intensities. Only the measurements obtained with molybdenum ra-

## Table 1. Atomic coordinates

| (Values in fractions of the unit cell) |  |  |  |
| :---: | :---: | :---: | ---: |
| Atom | $x$ | $y$ | $z$ |
| I | 0.175 | 0.335 | 0.077 |
| $\mathrm{Cl}_{1}$ | 0.134 | 0.011 | -0.004 |
| $\mathrm{Cl}_{2}$ | 0.215 | 0.658 | 0.160 |
| $\mathrm{C}_{1}$ | 0.058 | 0.335 | 0.120 |
| $\mathrm{C}_{2}$ | 0.038 | 0.171 | 0.173 |
| $\mathrm{C}_{3}$ | -0.043 | 0.171 | 0.203 |
| $\mathrm{C}_{4}$ | -0.107 | 0.335 | 0.182 |
| $\mathrm{C}_{5}$ | -0.088 | 0.498 | 0.130 |
| $\mathrm{C}_{6}$ | -0.007 | 0.498 | 0.100 |

Table 2. Observed and calculated values of the hol structure factors

| $h 0 l$ | $\left\|F_{o}\right\|$ | $F_{c}$ | hol | $\left\|F_{o}\right\|$ | $F_{c}$ | h0l | $\mid F_{o}$ \| | $F_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 200 | 24 | -25 | $40 \overline{2}$ | 58 | -65 | 10,0,8 | 19 | -21 |
| 400 | 19 | -16 | $40 \overline{4}$ | 43 | -41 | 10,0,10 | 20 | -20 |
| 600 | 35 | 34 | $40 \overline{6}$ | 9 | - 4 |  |  |  |
| 800 | 23 | -21 | $40 \overline{8}$ | 13 | 15 | 10,0, $\overline{\underline{2}}$ | 21 | -21 |
| 12,0,0 | 11 | 8 | 4,0,10 | 22 | 20 | 10,0,4 | 36 | -34 |
| 14,0,0 | 13 | 9 | 4,0,14 | 20 | -22 | 10,0,6 | 10 | -8 |
|  |  |  | 4,0,16 | 22 | -25 | 10,0,8 | 16 | 16 |
| 002 | 33 | 32 |  |  |  | 10,0,10 | 15 | 10 |
| 004 | 24 | -24 | 604 | 10 | $-7$ | 10,0,16 | 17 | -17 |
| 006 | 9 | - 13 | 606 | 31 | -32 |  |  |  |
| 008 | 22 | -21 | 608 | 27 | -25 | 12,0,4 | 19 | -21 |
| 0,0,10 | 4 | 9 | 6,0,10 | 13 | 19 | 12,0,6 | 30 | -29 |
| 0,0,12 | 31 | 37 | 6,0,12 | 21 | 24 |  |  |  |
| 0,0,14 | 21 | 23 |  |  |  | 12,0,0 $\overline{2}$ | 18 | 14 |
|  |  |  | $60 \overline{2}$ | 52 | 55 | $12,0, \underline{\overline{6}}$ | 22 | -20 |
| 202 | 55 | -50 | $60 \overline{6}$ | 34 | -33 | 12,0, $\overline{8}$ | 21 | -20 |
| 204 | 28 | -26 | $60 \overline{8}$ | 16 | -14 | 12,0,14 | 11 | 10 |
| 206 | 12 | 12 | 6,0,12 | 17 | 18 |  |  |  |
| 208 | 31 | 33 | 6,0,14 | 26 | 26 | 14,0,2 | 10 | -8 |
| 2,0,10 | 32 | 36 |  |  |  | 14,0,6 | 11 | 13 |
| 2,0,14 | 20 | -24 | 802 | 20 | -17 | 14,0,8 | 13 | 16 |
|  |  |  | 806 | 24 | 22 |  |  |  |
| $20 \overline{2}$ | 14 | 16 | 808 | 31 | 33 | 14,0, $\overline{6}$ | 23 | 21 |
| 204 | 35 | 36 | 8,0,10 | 14 | 16 | 14,0,8 | 13 | 12 |
| $20 \overline{6}$ | 17 | 16 |  |  |  |  |  |  |
| 2,0,10 | 21 | -22 | $80 \overline{2}$ | 9 | 6 | 16,0,2 | 14 | 15 |
| 2,0, $\overline{1} 2$ | 33 | -35 | 804 | 39 | 37 | 16,0,4 | 15 | 15 |
|  |  |  | $80 \overline{6}$ | 30 | 31 |  |  |  |
| 402 | 22 | 20 | 8,0,1] | 14 | -11 | 16,0,4 | 15 | -11 |
| 404 | 13 | 16 | 8,0,18 | 15 | 17 | 16,0,10 | 11 | 11 |
| 406 | 16 | 14 |  |  |  |  |  |  |
| 408 | 15 | -18 | 10,0,2 | 15 | 12 | 18,0,4 | 12 | -12 |
| 4,0,10 | 35 | -40 | 10,0,4 | 25 | 21 | 18,0,8 | 13 | -12 |
| 4,0,12 | 20 | -22 | 10,0,6 | 11 | 8 |  |  |  |

Table 3. Observed and calculated values of the 0kl structure factors
(No correction for temperature)

| 0kl | $\left\|F_{o}\right\|$ | $F_{c}$ | 0kl. | $\left\|F_{0}\right\|$ | $F_{c}$ | 0kl | $\left\|F_{0}\right\|$ | $F_{c}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 002 | 41 | 32 | 018 | 30 | 32 | 040 | 8 | - 15 |
| 004 | 30 | $-25$ | 0,1,10 | 29 | 26 | 044 | 9 | 15 |
| 006 | 12 | $-15$ | 0,1,12 | 5 | 14 | 048 | 11 | 24 |
| 008 | 28 | -23 | 0,1,16 | 17 | -30 |  |  |  |
|  |  |  | 0,1,18 | 13 | $-18$ | 052 | 17 | 20 |
| 0,0,10 | 6 | 11 |  |  |  | 054 | 16 | 26 |
| 0,0,12 | 41 | 50 | 020 | 25 | -14 | 058 | 9 | -22 |
| 0,0,14 | 28 | 34 | 024 | 20 | 17 | 0,5,10 | 8 | $-27$ |
|  |  |  | 026 | 25 | 20 |  |  |  |
| 012 | 42 | -35 | 0,2,10 | 9 | 10 | 060 | 23 | 47 |
| 014 | 39 | $-36$ |  |  |  | 062 | 7 | 16 |
| 016 | 15 | - 9 | 032 | 4 | 2 |  |  |  |

diation, and the projections obtained from them, are published in this paper.

## Determination of the structure

With 8 molecules in the unit cell nothing is fixed by symmetry. In the preliminary work of determining the structure it was assumed that any high-order spectrum with large $F$ had been formed almost entirely by contributions from the iodine atoms, and in this way the signs of the structure factors $F(h 0 l)$ and $F(0 k l)$ were provisionally determined. A projection on
the $a c$ plane was made; this gave the approximate positions of both I and Cl and showed the $\mathrm{ICl}_{2}$ group to be symmetrical and linear. The I and Cl atoms determine the signs of the structure factors $F(h 0 l)$ and $F(0 k l)$ uniquely, and from the first approximate projection a set of signs was calculated for the second projection, which gave good resolution for I and Cl but no accurate positions for the C atoms of the benzene ring. A diffraction ring surrounded the I atom. It disappeared when a temperature factor with $B=$ $4 \AA^{2}$ was applied, but this did not improve the resolution.

The projection on the $b c$ plane gave very poor resolution on account of the overlapping of atoms, and only approximate coordinates could be assigned to the Cl atoms and the benzene ring.

With the atomic coordinates determined in the preliminary work as a basis, three refinements of the $h 0 l$ projection were carried out, using the intensities obtained with Mo $K \alpha$ radiation. The benzene ring now appeared plainly, and fairly accurate $x$ and $z$ coordinates could be assigned to the carbon atoms. These refinements reduced the value of

$$
R=\Sigma\left\{\left|F_{o}\right|-\left|F_{c}\right|\right\} \div \Sigma\left|F_{o}\right|
$$

for the $h 0 l$ intensities from 0.20 to $0 \cdot 11$.
A difference projection,

$$
\begin{aligned}
& \varrho_{o}-\varrho_{c}=\frac{1}{A} \sum_{h} \sum_{l}\left\{F_{o}(h 0 l)-F_{c}(h 0 l)\right\} \\
& \\
& \quad \times \exp \{-2 \pi i(h x / a+l z / c)\},
\end{aligned}
$$

showed no peaks comparable with that of a carbon atom, but no information about the positions of the hydrogen atoms could be obtained.

The best projection on the $b c$ plane was obtained when no temperature factor was applied to the 30 scaled 0 kl spectra ( $R=0.30$ ). A temperature factor changed $R$ to $0 \cdot 20$, causing general flattening of the peaks, and reduced the resolution. An allowance was made for the overlap of the iodine atoms (Booth, 1948, p. 43) which gave a correction of $0.045 \AA$ to the $y$ coordinate. An $a b$ projection would have given no better resolution than the $b c$ projection, and was not made.

## Discussion

The $\mathrm{ICl}_{2}$ group is linear and symmetrical, a result which is in agreement with the configuration of trihalogen groups in compounds investigated by Mooney, namely $\mathrm{NH}_{4} \mathrm{I}_{3}$ (1935), $\mathrm{NH}_{4} \mathrm{BrICl}$ (1938), $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{ICl}_{2}$ (1939). Helmholtz \& Rogers (1940) have found that the anion of potassium fluoriodate ( $\mathrm{K}\left[\mathrm{IO}_{2} \mathrm{~F}_{2}\right]$ ), containing a six-valent iodine atom, has a configuration that may be regarded as a trigonal bipyramid, with the $\mathbf{F}$ atoms at the two apexes and one equatorial position unoccupied (see Fig. 3(a)).

It seems that in the case of divalent iodine in ionic compounds investigated by Mooney and of trivalent iodine in benzene iododichloride two valencies of iodine are oppositely directed, which agrees with the orientation of the two valencies directed towards the F atoms in $\mathrm{KIO}_{2} \mathrm{~F}_{2}$. The third valency in trivalent iodine (Fig. 3(b)) is directed approximately at right angles to the other two (see below).

The $\mathrm{ICl}_{2}$ group and the plane of the benzene ring are approximately at right angles to one another. The direction of downward tilt of the benzene ring is indicated by means of an arrow in Fig. 2. The $\mathrm{ICl}_{2}$ group makes an angle of $45^{\circ}\left( \pm 2^{\circ}\right)$ with the $a c$ plane and the benzene ring an angle of $50^{\circ}\left( \pm 2^{\circ}\right)$.

The projection of the $\mathrm{I}-\mathrm{C}_{1}$ distance on the $a c$ plane is $2.00( \pm 0.05) \AA$, which may be compared with the sum of the covalent radii of $2 \cdot 12 \AA$ and with the $I-C_{1}$ distance found by Archer (1948) in para-chlor-iodoxy benzene, $1.93 \AA$. Also, the projection of the $\mathrm{C}_{1}-\mathrm{C}_{4}$ distance on the ac plane is $2 \cdot 80( \pm 0.05) ~ \AA$, which agrees well with the $\mathrm{C}_{1}-\mathrm{C}_{4}$ distance in the normal benzene ring. Hence, the atoms $I, C_{1}$ and $C_{4}$ have been taken to lie in a straight line parallel to the $a c$ plane. Owing to the bad resolution of the benzene ring in the


Fig. I. Electron-density projected on the (010) (above) and (100) (below) planes. Contour intervals are approximately $1 \mathrm{e} . \AA^{-2}$ for carbon, $2 \mathrm{e} . \AA^{-2}$ for chlorine, $4 \mathrm{e} . \AA^{-2}$ for iodine atoms, the $2 \mathrm{e} . \AA^{-2}$ contour being broken.



Fig. 2. Structure of benzene iododichloride projected on the (010) (above) and (100) (below) planes. Symmetry operations and intermolecular distances in $\AA$ are shown. The direction of downward tilt of the benzene ring to the ( 010 ) plane is indicated by arrows. The molecules denoted by the heavier circles are $\frac{1}{2} a$ above or below the others.
$b c$ projection, the $y$ coordinates of the $C$ atoms were mainly determined by assuming the benzene ring to be a regular hexagon of side $1.40 \AA$, the plane of which makes an angle of $50^{\circ}$ with the $a c$ plane.

The $\mathrm{I}-\mathrm{Cl}$ distance is $2.45( \pm 0.015) ~ \AA$, which is rather longer than those obtained by Mooney for $\mathrm{NH}_{4} \mathrm{BrICl}(1938)$ and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{4} \mathrm{ICl}_{2}$ (1939), namely $2 \cdot 38$ and $2.34 \AA$ respectively.

The closest approach between the different molecules occurs between the I and $\mathrm{Cl}_{1}$ atoms of molecules III and IV, derived from one another by means of the
screw axis. This distance, $3 \cdot 40 \AA$, is very much smaller than the sum of the ionic radii of iodine and chlorine, $4 \cdot 0 \AA$. A similar close approach, although between different atoms, was found by Archer (1948) between the I and $\mathrm{O}_{1}$ atoms in the crystal of para-chlor-iodoxy benzene, which was $2.72 \AA$ instead of at least the sum of the ionic radii, $3 \cdot 3 \AA$. This close approach of the I and $\mathrm{Cl}_{1}$ atoms probably indicates the main binding force in the crystal.

The distances $\mathrm{I}-\mathrm{I}$ and $\mathrm{Cl}_{1}-\mathrm{Cl}_{1}$ between molecules III and IV are 4.68 and $4.44 \AA$ respectively, which


Fig. 3. (a) Trigonal bipyramid. (b) $\mathrm{CtCl}_{2}$ structure.
are considerably greater than their distances of closest approach, $4 \cdot 30$ and $3 \cdot 60 \AA$. The I-C distance of $4 \cdot 08 \AA$ between molecules II and IV compares well with the distance of closest approach, $4.05 \AA$.

The $\mathrm{C}_{5}-\mathrm{Cl}_{1}$ distance of $3.77 \AA$ between molecules II and III and the $\mathrm{C}_{3}-\mathrm{C}_{3}$ distance of $3.55 \AA$ between molecules I and II agree well with the distances of closest approach, 3.65 and $3.7 \AA$ respectively. In fact, a $\mathrm{CH}-\mathrm{CH}$ distance between different molecules as low as $3.4 \AA$ has been recorded by Iball (1934) in chrysene. From the $a c$ projection the angle $\mathrm{Cl}_{2}-\mathrm{I}-\mathrm{C}_{1}$ appears
to be $86^{\circ}\left( \pm 1^{\circ}\right)$ and not $90^{\circ}$. The latter angle would have given a $\mathrm{C}_{5}-\mathrm{Cl}_{1}$ distance of $3.5 \mathrm{l} \AA$, which is rather short.

The packing of the molecules accounts for the existence of the cleavage plane parallel to (001).

In conclusion the authors wish to thank Prof. R. W. James for his constant interest and help throughout the course of this work. We also wish to thank Dr W. S. Rapson and Dr M. Lamchen for preparing the material, and Dr R. H. Stoy, H. M. Astronomer at the Cape of Good Hope, for the use of the micro-photometer.

## References

Archer, E. M. (1948). Acta Cryst. 1, 64.
Воотн, A. D. (1948). Fourier Technique in X-Ray Organic Structure Analysis. Cambridge: University Press.
Helmholitz, L. \& Rogers, M. T. (1940). J. Amer. Chem. Soc. 62, 1537.
Iball, J. (1934). Proc. Roy. Soc. A, 146, 140.
Klug, A. (1950). Acta Cryst. 3, 165.
Mooney, R. C. L. (1935). Z. Krystallogr. 90, 143.
Mooney, R. C. L. (1938). Z. Krystallogr. 98, 324.
Mooney, R. C. L. (1939). Z. Krystallogr. 100, 519.

## Short Communications

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 500 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible; and proofs will not generally be submitted to authors. Publication will be quicker if the contributions are without illustrations.

Acta Cryst. (1953). 6, 92
Space-group of Andrographis. By B. S. Basak and D. R. Dasqupta, Indian Association for the Cultivation of Science, Calcutta 32, India
(Received 28 July 1952)

Andrographis, a crystalline bitter principle extracted from Andrographis paniculata (kalomegh), has the molecular formula $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{5}$. The crystal is found to be monoclinic on morphological study. Goniometric study, together with rotation photographs, gave

$$
a=6.530, b=8.036, c=19.530 \AA ; \beta=97^{\circ} 10^{\prime} .
$$

The density of the crystal was measured to be $1.21 \pm 0.01$ g.cm..$^{-3}$ by the flotation method, whence $Z$, the number of molecules per unit cell, is 2.

Weissenberg photographs about the three crystallographic axes showed that the absence of the odd orders of ( $0 k 0$ ) were the only extinctions observed. The space group was therefore either $C_{2}^{2}-P 2_{1}$ or $C_{2 h}^{2}-P 2_{1} / m$. Since there are only two molecules in the unit cell, the latter space group requires that there should be either a molecular centre of symmetry or a molecular plane of symmetry.

The complete structural formula of this substance is not yet known but certain features have been discovered
by Sarkar \& Moktadar (1935). They found the presence of only one double bond, together with one methylenedioxy group, so the molecule cannot have a centre of symmetry. If it has to possess a plane of symmetry, all the atoms of the molecules have to lie on that plane. This is quite improbable for such a complex molecule. Thus the possibility of the space group $C_{2 h}^{2}-P 2_{1} / m$ is excluded and the crystal is found to belong to the space group $C_{2}^{2}-P 2_{1}$. A more detailed paper on the subject will be published shortly.

Thanks are due to Prof. K. Banerjee for his interest in the work and to Dr H. G. Biswas for kindly presenting us with the substance.

## Reference

Sarkar, G. \& Moktadar, A. (1935). Science and Culture, 1, 300.


[^0]:    * Now Mrs D. H. Saunder, 21 Dingle Road, Belvedere, Salisbury, Southern Rhodesia.

